extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3xA4) = (C4xC12):C6 | φ: S3xA4/C22xS3 → C3 ⊆ Aut C22 | 36 | 6+ | C2^2.1(S3xA4) | 288,405 |
C22.2(S3xA4) = C42:C3:S3 | φ: S3xA4/C22xS3 → C3 ⊆ Aut C22 | 48 | 6 | C2^2.2(S3xA4) | 288,406 |
C22.3(S3xA4) = S3xC42:C3 | φ: S3xA4/C22xS3 → C3 ⊆ Aut C22 | 36 | 6 | C2^2.3(S3xA4) | 288,407 |
C22.4(S3xA4) = (C22xS3):A4 | φ: S3xA4/C22xS3 → C3 ⊆ Aut C22 | 24 | 6 | C2^2.4(S3xA4) | 288,411 |
C22.5(S3xA4) = SL2(F3).11D6 | φ: S3xA4/C3xA4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.5(S3xA4) | 288,923 |
C22.6(S3xA4) = Dic3xSL2(F3) | central extension (φ=1) | 96 | | C2^2.6(S3xA4) | 288,409 |
C22.7(S3xA4) = C2xDic3.A4 | central extension (φ=1) | 96 | | C2^2.7(S3xA4) | 288,921 |
C22.8(S3xA4) = C2xS3xSL2(F3) | central extension (φ=1) | 48 | | C2^2.8(S3xA4) | 288,922 |
C22.9(S3xA4) = C2xDic3xA4 | central extension (φ=1) | 72 | | C2^2.9(S3xA4) | 288,927 |