Extensions 1→N→G→Q→1 with N=C22 and Q=S3xA4

Direct product G=NxQ with N=C22 and Q=S3xA4
dρLabelID
C22xS3xA436C2^2xS3xA4288,1037

Semidirect products G=N:Q with N=C22 and Q=S3xA4
extensionφ:Q→Aut NdρLabelID
C22:(S3xA4) = A4xS4φ: S3xA4/A4S3 ⊆ Aut C22169+C2^2:(S3xA4)288,1024
C22:2(S3xA4) = S3xC22:A4φ: S3xA4/C22xS3C3 ⊆ Aut C2236C2^2:2(S3xA4)288,1038
C22:3(S3xA4) = A4xC3:D4φ: S3xA4/C3xA4C2 ⊆ Aut C22366C2^2:3(S3xA4)288,928

Non-split extensions G=N.Q with N=C22 and Q=S3xA4
extensionφ:Q→Aut NdρLabelID
C22.1(S3xA4) = (C4xC12):C6φ: S3xA4/C22xS3C3 ⊆ Aut C22366+C2^2.1(S3xA4)288,405
C22.2(S3xA4) = C42:C3:S3φ: S3xA4/C22xS3C3 ⊆ Aut C22486C2^2.2(S3xA4)288,406
C22.3(S3xA4) = S3xC42:C3φ: S3xA4/C22xS3C3 ⊆ Aut C22366C2^2.3(S3xA4)288,407
C22.4(S3xA4) = (C22xS3):A4φ: S3xA4/C22xS3C3 ⊆ Aut C22246C2^2.4(S3xA4)288,411
C22.5(S3xA4) = SL2(F3).11D6φ: S3xA4/C3xA4C2 ⊆ Aut C22484C2^2.5(S3xA4)288,923
C22.6(S3xA4) = Dic3xSL2(F3)central extension (φ=1)96C2^2.6(S3xA4)288,409
C22.7(S3xA4) = C2xDic3.A4central extension (φ=1)96C2^2.7(S3xA4)288,921
C22.8(S3xA4) = C2xS3xSL2(F3)central extension (φ=1)48C2^2.8(S3xA4)288,922
C22.9(S3xA4) = C2xDic3xA4central extension (φ=1)72C2^2.9(S3xA4)288,927

׿
x
:
Z
F
o
wr
Q
<